Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ai-Yun Fu, ${ }^{\text {a }}{ }^{*}$ Da-Qi Wang ${ }^{\text {b }}$ and Cun-Lan Zhang ${ }^{c}$

${ }^{\text {a }}$ Institute of New Pattern Material Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China

Correspondence e-mail:

aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.060$
$w R$ factor $=0.141$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

1,10-Phenanthrolinium-6-carboxypyridine-2-carboxylate-1,10-phenanthroline-pyridine-2,6dicarboxylic acid-ethanol-water (1/1/1/1/1/1)

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~N}^{-} \cdot \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot-$ $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~N} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$, the cations are stacked along the b axis to form a column-like structure. The anions, ethanol molecules and water molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form a zigzag sheet-like structure. The cationic columns and anionic sheets are alternately arranged along the c axis.

Comment

The asymmetric unit of (I), contains a $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}\right)^{+}$ cation, a $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~N} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~N}\right)^{-}$anion, a solvent ethanol molecule and a water molecule (Fig. 1). The N3-H3AN.N5 ${ }^{\mathrm{i}}$ hydrogen-bonded (see Table 2 for symmetry code) 1,10phenanthrolinium and 1,10-phenanthroline molecules form a cation, and the $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 5^{\mathrm{iii}}$ hydrogen-bonded pyridine-2,6-dicarboxylic acid and 6-carboxypyridine-2-carboxylate molecules form an anion. The $\mathrm{C}-\mathrm{O}$ bond lengths of the carboxylate group $[\mathrm{C} 14-\mathrm{O} 5=1.289(4) \AA$ and $\mathrm{C} 14-\mathrm{O} 6=$ $1.222(5) \AA$ A $]$ are not equal as the $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 5^{\mathrm{iii}}[\mathrm{O} \cdots \mathrm{O}=$ $2.440(4) \AA]$ hydrogen bond is stronger than the $\mathrm{O} 9-$ $\mathrm{H} 9 \cdots \mathrm{O}^{\mathrm{v}}[\mathrm{O} \cdots \mathrm{O}=2.768$ (5) \AA] hydrogen bond. The other bond lengths and angles in the cation are comparable to corresponding values found in its complexes (Fu, Sun et al., 2004; Fu, Wang \& Shen, 2004; Fu, Wang, Shen \& Zhang, 2004; $\mathrm{Fu}, \mathrm{Fu} \& \mathrm{Yu}, 2005$), and those in the anion of (I) are consistent with the values found in its complexes (Fu, Wang \& Liu, 2004; Fu, Wang \& Sun, 2005).

Received 17 August 2005 Accepted 30 August 2005 Online 7 September 2005

In the crystal structure of (I), the cations are stacked along the b axis to form a column-like structure. The anions and ethanol and water molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) to form a zigzag sheetlike structure. The cationic columns and anionic sheets are alternately arranged along the c axis (Fig. 2).

Experimental

Phenanthroline (1 mmol) and dipicolinic acid (1 mmol) were dissolved in a 1:1 alcohol and distilled water solution $(20 \mathrm{ml})$, which was allowed to stand in air. After 14 d , colourless prism-shaped crystals separated. These were collected, washed with water and dried in a vacuum over CaCl_{2} (yield 41%). Elemental analysis found: C
63.17, H 4.44, N 10.98%; calculated for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{10}$: C 63.32, H 4.51, N 11.08\%.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}^{-} \cdot \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot-$
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=758.73$
Monoclinic, $P 2_{b} / c$
$a=20.802$ (7) А
$b=7.861$ (3) \AA
$c=24.488(6) \AA$
$\beta=116.72(2)^{\circ}$
$V=3577(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.961, T_{\text {max }}=0.989$
18072 measured reflections
$D_{x}=1.409 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1469 reflections
$\theta=2.6-20.2^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.39 \times 0.13 \times 0.11 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.141$
$S=1.00$
6314 reflections
512 parameters

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C1	$1.196(5)$	O4-C7	$1.281(4)$
O2-C1	$1.309(5)$	O7-C8	$1.321(5)$
O3-C7	$1.213(5)$	O8-C8	$1.206(5)$
O1-C1-O2	$124.2(4)$	O8-C8-O7	$120.9(5)$
O1-C1-C2	$122.7(4)$	O8-C8-C	$123.1(5)$
O2-C1-C2	$113.1(4)$	O7-C8-C9	$116.0(5)$
O3-C7-O4	$126.5(5)$	O6-C14-O5	$125.0(4)$
O3-C7-C6	$121.0(4)$	O6-C14-C13	$120.7(4)$
O4-C7-C6	$112.5(4)$	O5-C14-C13	$114.3(4)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 5^{\text {i }}$	0.86	2.08	2.863 (5)	152
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 10^{\text {ii }}$	0.82	1.74	2.549 (4)	170
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 5^{\text {iii }}$	0.82	1.64	2.440 (4)	164
$\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O} 9^{\text {iv }}$	0.82	1.93	2.686 (5)	154
O7-H7 . . N2	0.82	2.17	2.662 (4)	118
O9-H9 . $\mathrm{O}^{\text {b }}$	0.82	1.96	2.768 (5)	169
O9-H9 . .N $2^{\text {v }}$	0.82	2.41	2.850 (5)	114
$\mathrm{O} 10-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.87 (2)	2.02 (2)	2.869 (5)	167 (4)
$\mathrm{O} 10-\mathrm{H} 6 \cdots 3^{\text {vi }}$	0.84 (2)	2.23 (4)	2.876 (4)	134 (4)
$\mathrm{O} 10-\mathrm{H} 6 \cdots \mathrm{~N} 1^{\text {vi }}$	0.84 (2)	2.35 (3)	3.041 (5)	140 (4)

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y+1, z$; (iv) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (vi) $x, y-1, z$.

The water H atoms were located in difference Fourier maps, and were refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (2) and 1.35 (2) \AA, respectively, and with fixed $U_{\text {iso }}$ value of $0.08 \AA^{2}$. All other

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal packing of (I), showing the hydrogen-bonded interactions as dashed lines.

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{O}-\mathrm{H}=0.82 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=$ $0.93-0.97 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for methyl and hydroxy H atoms, and $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for other H atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the Education Office of Shandong Province, People's Republic of China, for research grant No. J05D55.

References

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

organic papers

Fu, A.-Y., Fu, S.-Z. \& Yu, T. (2005). Acta Cryst. E61, m223-m225.
Fu, A.-Y., Sun, Y.-L., Wang, D.-Q., Zhang, W.-S. \& Ren, A.-K. (2004). Acta Cryst. E60, m701-m702.
Fu, A.-Y., Wang, D.-Q. \& Liu, A.-Z. (2004). Acta Cryst. E60, m1372-m1373.
Fu, A.-Y., Wang, D.-Q. \& Shen, Q.-J. (2004). Acta Cryst. E60, m1346-m1348.

Fu, A.-Y., Wang, D.-Q., Shen, Q.-J. \& Zhang, C.-L. (2004). Acta Cryst. E60, m1337-m1339.
Fu, A.-Y., Wang, D.-Q. \& Sun, D.-Z. (2005). Acta Cryst. E61, m401-m403. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2005 International Union of Crystallography

