Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ai-Yun Fu,^a* Da-Qi Wang^b and Cun-Lan Zhang^c

^aInstitute of New Pattern Material Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, ^bDepartment of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China, and ^cDepartment of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China

Correspondence e-mail: aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.060 wR factor = 0.141 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

rts 1,10-Phenanthrolin 2-carboxylate_1 10

1,10-Phenanthrolinium_6-carboxypyridine-2-carboxylate_1,10-phenanthroline_pyridine-2,6dicarboxylic acid_ethanol_water (1/1/1/1/1/1)

In the title compound, $C_{12}H_9N_2^+ \cdot C_7H_5O_4N^- \cdot C_{12}H_8N_2 \cdot C_7H_4O_4N \cdot C_2H_6O \cdot H_2O$, the cations are stacked along the *b* axis to form a column-like structure. The anions, ethanol molecules and water molecules are linked *via* $O-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot N$ hydrogen bonds to form a zigzag sheet-like structure. The cationic columns and anionic sheets are alternately arranged along the *c* axis.

Received 17 August 2005 Accepted 30 August 2005 Online 7 September 2005

Comment

The asymmetric unit of (I), contains a $(C_{12}H_8N_2 \cdot C_{12}H_9N_2)^+$ cation, a $(C_7H_5O_4N\cdot C_7H_4O_4N)^-$ anion, a solvent ethanol molecule and a water molecule (Fig. 1). The N3-H3A···N5ⁱ hydrogen-bonded (see Table 2 for symmetry code) 1,10phenanthrolinium and 1,10-phenanthroline molecules form a cation, and the O4-H4···O5ⁱⁱⁱ hydrogen-bonded pyridine-2,6-dicarboxylic acid and 6-carboxypyridine-2-carboxylate molecules form an anion. The C-O bond lengths of the carboxylate group [C14-O5 = 1.289 (4) Å and C14-O6 =1.222 (5) Å] are not equal as the O4–H4···O5ⁱⁱⁱ [O···O = 2.440 (4) Å] hydrogen bond is stronger than the O9- $H9 \cdots O6^{v}$ [$O \cdots O = 2.768$ (5) Å] hydrogen bond. The other bond lengths and angles in the cation are comparable to corresponding values found in its complexes (Fu, Sun et al., 2004; Fu, Wang & Shen, 2004; Fu, Wang, Shen & Zhang, 2004; Fu, Fu & Yu, 2005), and those in the anion of (I) are consistent with the values found in its complexes (Fu, Wang & Liu, 2004; Fu, Wang & Sun, 2005).

In the crystal structure of (I), the cations are stacked along the *b* axis to form a column-like structure. The anions and ethanol and water molecules are linked *via* $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (Table 2) to form a zigzag sheetlike structure. The cationic columns and anionic sheets are alternately arranged along the *c* axis (Fig. 2).

Experimental

Phenanthroline (1 mmol) and dipicolinic acid (1 mmol) were dissolved in a 1:1 alcohol and distilled water solution (20 ml), which was allowed to stand in air. After 14 d, colourless prism-shaped crystals separated. These were collected, washed with water and dried in a vacuum over CaCl₂ (yield 41%). Elemental analysis found: C

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

63.17, H 4.44, N 10.98%; calculated for $C_{40}H_{34}N_6O_{10}$: C 63.32, H 4.51, N 11.08%.

Crystal data

 $\begin{array}{l} C_{12}H_{9}N_{2}^{+}\cdot C_{7}H_{4}NO_{4}^{-}\cdot C_{12}H_{8}N_{2}\cdot \\ C_{7}H_{5}NO_{4}\cdot C_{2}H_{6}O\cdot H_{2}O \\ M_{r} = 758.73 \\ \text{Monoclinic, } P2_{1}/c \\ a = 20.802 \ (7) \ \text{\AA} \\ b = 7.861 \ (3) \ \text{\AA} \\ c = 24.488 \ (6) \ \text{\AA} \\ \beta = 116.72 \ (2)^{\circ} \\ V = 3577 \ (2) \ \text{\AA}^{3} \\ Z = 4 \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\min} = 0.961, T_{\max} = 0.989$ 18072 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.141$ S = 1.006314 reflections 512 parameters $D_x = 1.409 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 1469 reflections $\theta = 2.6-20.2^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K Prism, colourless $0.39 \times 0.13 \times 0.11 \text{ mm}$

6314 independent reflections 2335 reflections with $I > 2\sigma(I)$ $R_{int} = 0.111$ $\theta_{max} = 25.0^{\circ}$ $h = -24 \rightarrow 20$ $k = -8 \rightarrow 9$ $l = -29 \rightarrow 29$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0316P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.196 (5)	O4-C7	1.281 (4)
O2-C1	1.309 (5)	O7-C8	1.321 (5)
O3-C7	1.213 (5)	O8-C8	1.206 (5)
O1-C1-O2	124.2 (4)	08-C8-07	120.9 (5)
O1-C1-C2	122.7 (4)	O8-C8-C9	123.1 (5)
O2-C1-C2	113.1 (4)	07-C8-C9	116.0 (5)
O3-C7-O4	126.5 (5)	O6-C14-O5	125.0 (4)
O3-C7-C6	121.0 (4)	O6-C14-C13	120.7 (4)
O4-C7-C6	112.5 (4)	O5-C14-C13	114.3 (4)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3A\cdots N5^{i}$	0.86	2.08	2.863 (5)	152
$O2-H2$ ··· $O10^{ii}$	0.82	1.74	2.549 (4)	170
O4-H4···O5 ⁱⁱⁱ	0.82	1.64	2.440 (4)	164
$O7-H7$ ··· $O9^{iv}$	0.82	1.93	2.686 (5)	154
$O7 - H7 \cdot \cdot \cdot N2$	0.82	2.17	2.662 (4)	118
$O9-H9\cdots O6^{v}$	0.82	1.96	2.768 (5)	169
$O9-H9 \cdot \cdot \cdot N2^{v}$	0.82	2.41	2.850 (5)	114
O10-H1···O1	0.87(2)	2.02(2)	2.869 (5)	167 (4)
$O10-H6\cdots O3^{vi}$	0.84(2)	2.23 (4)	2.876 (4)	134 (4)
$O10-H6\cdots N1^{vi}$	0.84 (2)	2.35 (3)	3.041 (5)	140 (4)

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y + 1, z; (iv) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) x, y - 1, z.

The water H atoms were located in difference Fourier maps, and were refined with O–H and H···H distance restraints of 0.85 (2) and 1.35 (2) Å, respectively, and with fixed $U_{\rm iso}$ value of 0.08 Å². All other

Figure 1

The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing of (I), showing the hydrogen-bonded interactions as dashed lines.

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O-H = 0.82 Å, N-H = 0.86 Å, C-H = 0.93–0.97 Å, and $U_{iso}(H) = 1.5U_{eq}(C,O)$ for methyl and hydroxy H atoms, and $1.2U_{eq}(C,N)$ for other H atoms.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank the Education Office of Shandong Province, People's Republic of China, for research grant No. J05D55.

References

- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

- Fu, A.-Y., Fu, S.-Z. & Yu, T. (2005). *Acta Cryst.* E**61**, m223–m225. Fu, A.-Y., Sun, Y.-L., Wang, D.-Q., Zhang, W.-S. & Ren, A.-K. (2004). *Acta* Cryst. E60, m701-m702.
- Fu, A.-Y., Wang, D.-Q. & Liu, A.-Z. (2004). Acta Cryst. E60, m1372–m1373.
 Fu, A.-Y., Wang, D.-Q. & Shen, Q.-J. (2004). Acta Cryst. E60, m1346–m1348.

Fu, A.-Y., Wang, D.-Q., Shen, Q.-J. & Zhang, C.-L. (2004). Acta Cryst. E60, m1337-m1339.

- Fu, A.-Y., Wang, D.-Q. & Sun, D.-Z. (2005). Acta Cryst. E61, m401-m403.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
 Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.